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National Round 2023
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Instructions for the Candidate:

• For all questions, the process involved in arriving at the solution is more important than the answer
itself. Valid assumptions / approximations are perfectly acceptable. Please write your method clearly,
explicitly stating all reasoning.

• Be sure to calculate the final answer in the appropriate units asked in the question.

• Non-programmable scientific calculators are allowed.

• The mark distribution is shown in the [ ] at the right corner for every question.

Table 1: Useful Constants and Formulas

Mass of the Sun M⊙ ≈ 1.989× 1030 kg
Mass of the Earth M⊕ ≈ 5.972× 1024 kg
Mass of the Moon M$ ≈ 7.347× 1022 kg
Radius of the Earth R⊕ ≈ 6.371× 106m
Radius of the Sun R⊙ ≈ 6.955× 108m
Radius of the Moon R$ = 1737 km
Distance from the Earth to the Moon r$−⊕ = 384400 km
Geometric albedo of the Earth Ab,⊕ ≈ 0.37
Geometric albedo Moon Ab,$ ≈ 0.12
Speed of light c ≈ 3× 108 m/s
Synodic period of Moon rotation ≈ 29.5 days
Astronomical Unit (AU) a⊕ ≈ 1.496× 1011m
Solar Luminosity L⊙ ≈ 3.826× 1026W
Solar Constant S⊙ ≈ 1367 W/m2

Gravitational Constant G ≈ 6.674× 10−11Nm2kg−2

1 parsec 1 pc = 3.086× 1016m
Stefan’s constant σ = 5.670× 10−8Wm2K−4
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1 Phases of Moon and Mercury [5]

On a certain day, Oyon was observing the night sky. He was amused to see that the Moon is occulting the
planet mercury which is a rare celestial occurrence.

a. Draw the geometry of the scenario. What is the maximum phase (the ratio of the area of the illuminated
part of the disk to the total area) that the Moon can have in conjunction with Mercury? [2]

b. What will be the phase of Mercury? The orbits of Mercury and the Moon are considered circular and
located in the plane of the ecliptic, the radius of Mercury’s orbit is 0.4 AU. [3]

Solutions

Solution a

Obviously, the maximum phase of the Moon in conjunction with Mercury will be reached at the
moments of maximum elongation of Mercury. Since we need the ratio of the area of the illuminated
part to the total area of the disk, then the elongation can be both eastern and western, the areas of
the illuminated part in both cases will be the same.

orbit of the earth

orbit of Mercury

part of Disk illuminated 

by the Sun

part of the illuminated disk

as seen from the Earth

what we see

in the sky

পি�ম 

Not to scale

Figure 1: Conjunction of Mercury and Moon

[Approximate drawing of the scenario carries 1 Mark]

Let’s estimate the maximum elongation of Mercury be ε (see Fig. 1). In the SPM triangle, the angle
at M is straight, the hypotenuse NW is 1 AU, the leg of the SM is 0.4 AU. Hence, sin ε = 0.4, i.e.
ε ≈ 23◦. [Understanding the relation between phase and elongation 1 Mark]

Solution b

It is obvious that in the maximum elongation the phase of Mercury is equal to 0.5. The moon has
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less phase.

Let’s evaluate it. In the triangle ZSL, the side of the ZS is approximately 400 times larger than the
side of the ZL, so we can assume that the angle at C is close to zero, and the angle at L is 180◦ − ε.
Therefore, the dihedral angle, “cutting out” a part of the area illuminated by the Sun and visible from
the Earth, is equal to ε.

1b Cresent Projection of Moon

When projecting the image of the Moon onto the celestial sphere, a “crescent” will be obtained, shown
in Fig. 1b, whose maximum width O′F is defined as OO′ −OF. OO′ = OF ′ = R$, where R$ is the
radius of the Moon.

O′F = OO′ −OF = OO′ −OF ′ cos ε = R$(1−
√

1− sin2 ε) ≈ 0.1R$

[Understanding the crescent geometry carries 1 Mark]

S =
1

2
πR2

$ − 1

2
πR$ · 0.9R$ = 0.05πR2

$

and the ratio of the area of the illuminated part of the disk to the total area

Smoon

Sdisk
=

0.05πR2
$

πR2
$

= 0.05

From the phase, it is evident that the moon is near New at this particular time due west after sunset.
[Final ratio carries 1 Mark]
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2 Dimensions of Blackhole [15]

We will venture into the mysterious realm of quantum gravity, and use dimensional analysis to learn about
black holes. Here, all of the fundamental constants will be involved. First, we can define it a little more
formally, “A black hole is a region of spacetime that traps light. The boundary of this region is called the
event horizon”.

a. Express the radius of a black hole, i.e. light-trapping region, in terms of its mass, m, gravitational
constant, G and the speed of light, c using only dimensional analysis. [2]

b. Using the equation you derived, find the radius of a black hole with a mass of 2× 1031 kg. [1]

c. The actual size of a black hole with a mass of 2× 1031 kg is nearly 29.7 km. If this is different from the
answer you found in (b), suggest a reason why. [1]

In a section of Black Holes Ain’t So Black (Chapter 7, pp. 109-110), Hawking writes the following:
“(. . .) a black hole ought to emit particles and radiation as if it were a hotbody with a temperature that
depends only on the black hole’s mass (. . .)”
At this point, Hawking goes on to explain in detail the quantum properties of black holes, as well as the
concept of Hawking temperature. The British physicist’s explanations end with the following words:
“(...) A flow of negative energy into the black hole therefore reduces its mass (. . .) Moreover, the lower
the mass of the black hole, the higher its temperature.”

d. Guess the Temperature of black holes using the same approach. If you’re unable to solve a. then use
Schwarzschild radius as a proxy. [3]

The deflection of light by a gravitational field was first predicted by Einstein in 1912, a few years before
the publication of General Relativity in 1916. A massive object like Blackhole that causes a light deflec-
tion behaves like a classical lens. This prediction was confirmed by Sir Arthur Stanley Eddington in 1919.

We’ll now use dimensional analysis to determine the form of the equation describing the deflection angle
due to gravity for a light ray passing by a star (or other objects) of mass m. First, let’s define the angle θ
as the angle between the directions of the ray of light when it is asymptotically far from the star (coming
towards the star and going away from the star), as shown in

r

m
Figure 2: Deflection of light by a Blackhole

Note that when angles appear in an equation, they should always be expressed in radians. An angle
expressed in radians is dimensionless. Therefore, the deflection angle θ is dimensionless.

e. On which physical variables might the deflection angle depend? [4]

f. Using general relativity the proportionality constant from the previous answer would be k = 4. If the
central object is the Sun calculate the numerical value of the deflection angle of a photon. [4]
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Solutions

Solution a

We suppose that the size R of blackhole is connected with mass m,

R ∼ ma Gb cd

[Understanding the relation between parameters carries no mark]

Taking dimensions L remains in leftside and rightside

Ma ·

(
L3

MT 2

)b

·
(
L

T

)d

= Ma−bL3d+bT−2b+d.

Equating exponents in both sides [Solving equations carries 1 Mark]

a− b = 0, 3b+ d = 1, 2b+ d = 0

Solving the above equations we get a = b = 1 and d = −2 from which we understand that,

R ∼ Gm

c2
=⇒ Rs =

2Gm

c2

[Final equation carries 1 Mark]
The student is meant to ignore the factor of ‘2’ to get full marks.

Solution b

We derived in (a),

Rs =
Gm

c2

Rs =
G× 2× 1031

c2

[Plugging m into the right equation carries no mark]

Rs = 14830 m ∼ 14.8 km

[Final calculations 1 Mark]

Solution c

Dimensional analysis doesn’t consider the effect of dimensionless quantities such as numbers into the
equation. [Understanding of this idea 1 Mark]

Solution d

We can guess that
T ∼ Ra kbB ℏd ce

[Understanding the relation between parameters carries 1 Mark]
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The dimensions of leftside is Temperature and the dimensions of rightside is

La ·

(
ML2

ΘT 2

)b

·

(
ML2

T

)d

·
(
L

T

)e

= La+2b+2d+eM b+dT−(2b+d+e)Θ−b

We got a systems of equations [Solving equations carries 1 Mark]

a+ 2b+ 2d+ e = 0

b+ d = 0

2b+ d+ e = 0

−b = 1

Solving the equations we get, a = b = −1 and d = e = 1, Therefore the temperature of blackhole can
be approximated as

T ∼ ℏc
kB R

∼ ℏc3

kBGm

[Final equation carries 1 Mark]

Solution e

Our physical intuition tells us that the angle should depend on the mass of the star m and on the
distance of the ray of light from the star. Let’s define r to be the distance of the closest approach
of the ray to the star as shown in the sketch above. If we proceed with our dimensional analysis
at this point, we will find that there is no dimensionally consistent form for the equation expressing
θ in terms of m and r, just as we found that the period of oscillation of a pendulum could not be
expressed in terms of m and l alone. So, again there must be a dimensional constant that we need
to include. Since the deflection of light is due to gravity, we might suspect that the angle depends
on the gravitational constant G. What are the dimensions of G? Recall that the equation for the
gravitational force between two massive objects of mass m1 and m2 a distance r apart is given by
F = Gm1m2

r2
. Therefore,

[G] =

[
Fr2

m1m2

]
= M−1L3T−2

where we used [F ] = MLT−2. Now let’s try to find the equation for θ:

θ = kmαrβGγ

The equation relating dimensions is

M0L0T0 = MαLβ(M−1L3T−2)γ

Equating the exponents of the basic dimensions M, L, and T, we get

Exponents of M → 0 = α− γ,

Exponents of L → 0 = β + 3γ,

Exponents of T → 0 = −2γ.

But the last equation gives us γ = 0, the second one gives us β = 0 and the first one gives α = 0! So,
we must still be missing a physical variable or a dimensional constant. Which dimensional constant
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is most likely to be relevant for the case of the bending of light by gravity? How about the speed of
light, c? Let’s try it:

θ = kmαrβGγcδ

[Understanding the relation between parameters carries 2 Mark]

The equation relating dimensions is now

M0L0T0 = MαLβ(M−1L3T−2)γ(LT−1)δ

Equating the exponents of the basic dimensions M, L and T, we get

Exponents of M → 0 = α− γ,

Exponents of L → 0 = β + 3γ + δ,

Exponents of T → 0 = −2γ − δ.

So now we have three equations in four unknowns. The four exponents α, β, γ, and δ are constrained
but are not uniquely determined. Each of the three equations involves γ, so let’s express the other
three exponents in terms of γ. From the first equation, α = γ. From the last equation, δ = −2γ. And
from the second equation, β = −δ − 3γ = 2γ − 3γ = −γ. [Solving equations carries 1 Mark]

Therefore, the equation for the bending angle is of the form

θ = kmγr−γGγc−2γ = k

(
mG

rc2

)γ

Actually, there could be more than one term in the equation for θ, each with a different value of the
exponent γ and the constant k, but each term must have the above form. In fact, there could be an
infinite number of terms (an infinite series), in which case the right-hand side might be a function of
mG
rC2 that can be represented as a series expansion. So, we have not uniquely determined the form of
the equation for θ but we can already draw some conclusions from the above equation. For example,
we can see that the bending angle depends on the ratio m/r; if m and r are both changed by the
same factor, the bending angle will be the same.

We can go further and restrict γ by using physical intuition. First, we expect that θ approaches
zero as m becomes very small or as r becomes very large. If γ were negative, then θ would ap-
proach infinity as m became small or r became large. Therefore, γ must be a positive exponent: γ > 0.

To further restrict γ, we can try to apply physical intuition to the derivative of θ with respect to m
or r. Since the ratio m/r appears in the equation for θ, let’s consider the derivative with respect to
x = mG

rc2
:

dθ

dx
= γkxγ−1, γ > 0

Our physical intuition might tell us that in the limit of x = mG
rc2

becoming very small, the change in θ
with respect to a change in m/r should become small, but should not vanish. Therefore, we want the
exponent of mG

rc2
to be zero in the equation for dθ

dx . So γ must equal 1 and the equation for θ, at least

for small values of the dimensionless combination of variables mG
rc2

, is

θ = k
mG

rc2
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[Final equation carries 1 Mark]
I admit that this last argument is a bit of a stretch...

What about the dimensionless constant k? A survey of all the equations that you will learn in the
Introductory Physics sequence will convince you that the dimensionless constants in physical equations
are always of order 1. And the equation we just derived is no exception. It turns out that θ = kmG

rc2

with k = 4.
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3 Rotation Rate of a Pulsar [20]

A Pulsar is a Neutron-Star with a very high rotation rate. But how fast can a neutron-star rotate before it
breaks up due to its own centrifugal forces? We assume the pulsars to be spheres of uniform density, which
are gravitationally bound.

a. Find an expression for the minimum rotation period, Pmin, of a pulsar as a function of its mass, M , and
radius, R, before it breaks up. [2]

b. Evaluate Pmin for a typical pulsar with M = 1.4M⊙ and R = 10 km. [1]

c. Millisecond pulsars are those that have rotation periods on the order of a millisecond. The fastest-rotating
millisecond pulsar rotates about 716 times per second. What limit does this put on its density? [3]

A pulsar is formed from a massive progenitor star which typically has a magnetic field of 0.1T and an
average density of 0.1 kg/m3. Such a star loses about 90% of its mass toward the end of its life. The
remnant mass forms a pulsar of the kind described above.

d. Assuming that the magnetic flux is conserved during the formation of a pulsar, find the typical magnetic
field at the surface of the pulsar. For the pulsar M = 1.4M⊙ and R = 10km. [4]

The Crab Nebula has a total luminosity of ∼ 5 × 1031 J/sec. This nebula is powered by a centrally
located pulsar which is now rotating with a period of 0.033 seconds. The pulsar is observed to be slowing
down (the period is increasing), and the corresponding decrease in its supply of stored rotational kinetic
energy is used to inject power into the Crab Nebula. Assume a mass and radius for the pulsar of 1.4M⊙
and 10km, respectively.

e. Write down an expression for the rotational kinetic energy (Iω2/2) in terms of M, R & P of the pulsar.
[Approximate the moment of inertia, I, as that for a uniform density sphere, i.e., 2MR2/5.] [2]

f. Compute how much energy is stored in the Crab pulsar in the form of rotational kinetic energy. [1]

We define E as the rotational kinetic energy, Ė as the rate of change of this energy with time, and Ṗ as
the rate of change of the Pulsar’s period with time. You may note that if E ∝ Pn then Ė/E = nṖ/P

g. Using your answer in part (e), find a general expression for the rate at which rotational kinetic energy
is lost as the period of pulsar increases (i.e., as the rotation rate of the pulsar decreases). Express your
answer in terms of R, M, P , and Ṗ . [2]

h. Evaluate this expression for the Crab pulsar, given the fact that the observed spin-down rate Ṗ . amounts
to 36 nanoseconds per day. Compare this to the power output of the entire Crab Nebula. [2]

i. Use the spin-down rate given in part (h) to make a rough estimate of the age of the Crab pulsar and hence
that of the nebula. Compute the actual age from the fact that the supernova that led to the formation
of the pulsar was observed by the Chinese in the year 1054 A.D. [3]
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Solutions

Solution a

ω2R = GM/R2

[Equating centrifugal to gravitational acceleration 1 Mark]

ω =
√
GM/R3

Pmin =
2π√

GM/R3

[Finding the final expression 1 Mark]

Solution b

Pmin =
2π√

G× 1.4× 2× 1030/(10× 103)3

Pmin = 4.596× 10−4 rsec

[Calculating the final value 1 Mark]

Solution c

Rotation rate, f = 716Hz
Period, Pmin = 1/716 sec

= 1.400× 10−3 sec [1 Mark]

from (a) Pmin =
2π√

GM/R3
and putting M = 4

3πR
3ρp

ρp =
3π

GP 2
min

[1 Mark]

ρp = 7.21× 1016kg/m3

[Calculating the final value 1 Mark]

Solution d

Rst =
3

√
3Mst

4πρst
= 3

√
30Mp

4πρst
[1 Mark]

Rst = 4.15× 1010m

ϕ = AB = constant

[1 Mark]

4πR2B = constant
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Bst/Bp = R2
st/R

2
p

[1 Mark]

Bp = Bst ×R2
p/R

2
st

Bp = 3.4× 1011 T

[Calculating the final value 1 Mark]

Solution e

Iω2

2
1

2
× 2MR2

5
× (

2π

P
)2

4π2MR2

5P 2
[2 Mark]

Solution f

Rotational energy = 4π2 × 1.4× 2× 1030 × (10× 103)2/5(0.033)2 J
= 2.03× 1042 J [Calculating the final value 1 Mark]

Solution g

Here, E ∝ P−2

So, Ė/E = −2Ṗ /P [1 Mark]
From (e),

Ė × 5P 2

4π2MR2
= −2Ṗ /P

Ė = −8π2MR2

5P 3
Ṗ [1 Mark]

Solution h

Convert 36 ns/day to sec/sec, [1 Mark]
Plug in the numbers, and calculate to get 5.1e31 J/s which is the same as the luminosity [1 Mark].

Solution i

P/Ṗ = 2511 yrs [3 Mark]

11



4 Measuring the Astronomical Unit

with the Venus Transit [8]

After Kepler published his third law in 1619, the distances between the planets in the Solar System were all
known relative to the distance between the Earth and the Sun (1 Astronomical Unit). A measurement of
one of these distances was therefore enough to determine the physical length of 1 Astronomical Unit (AU).
One of the first measurements was conducted making use of the Venus transit in 1761, as proposed by British
astronomer Edmund Halley. The aim of this problem is to follow the main steps in his derivation and to
obtain our own estimate of the AU.

Figure 3: Geometry of Sun, Earth, and Venus system

As shown in Fig-3 the transit of Venus will be observed at slightly different positions when viewed from
different points on Earth. Knowing the parallax of Venus θV and the distance between observers A and
B the Earth-Venus distance can be calculated, and therefore all distances between the planets in the Solar
System. Halley proposed to infer θV by timing the duration of the Venus transit at two different locations
on Earth A and B.
In order to estimate the AU, we will use data from 2004’s Venus transit observed in Cairo (A) and Durban
(B).

To solve this problem, we will make the following assumptions:

1. The Earth does not rotate.

2. The Venus transit happens when Venus is below the Earth-Sun plane.

Location Start of transit End of transit

Cairo (A) 5:39:09 11:04:35
Durban (B) 5:35:52 11:10:07

Table 2
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Figure 4: Geometry of Venus transit.

a. How long do the transits last in Cairo, TA and in Durban, TB? [1]

b. Assuming small angles, determine the angular separation between the two Venus transits θ using Fig-4
and Table 2. The angular size of Sun’s disk is given by R = 15.25 arcmin and the angular velocity of
Venus is dV = 0.0669 arcsec/sec. [2]

Sun

A

B
Venus

C

Earth

P

Figure 5: Effect of Solar parallax on measurement of Venus transit

c. Using the angle θ calculated in the previous problem, determine the parallax of Venus θV as a function
of the parallax of the Sun θS using Fig 5. [2]
Hint: Relate the angle θ to the two angles βA and βB.

d. Assuming that the distance between the two positions A and B is dAB = 5840 km and using Kepler’s
third law

T 2

a3
= const.

where a is the semi-major axis of the planetary orbit and T is its orbital period, determine the Astro-
nomical Unit using TV enus = 224 days and TEarth = 365 days. You can work with the assumptions that
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planets move on circular orbits around the Sun. [3]

Solutions

Solution a

For Cairo, TA = Ending time - Starting time = (11× 3600 + 4× 60 + 35)− (5× 3600 + 39× 60 + 09)
= 19526 s
Similarly for Durban, TB = 20055 s [For both calculations 1 Mark]

Solution b

If we assume that the angular separations in the problem are small, we can work in a planar geometry
and apply Pythagoras’ theorem to get the angular separation of the two transits. From Fig-1 we have
that

θ =

√
R2 −

(
TADV

2

)2

−

√
R2 −

(
TBdV
2

)2

[Using pythagoras to calculate θ, 1 Mark]
Inserting

TA = 11 : 04 : 35− 5 : 39 : 09 = 19526 s

TB = 11 : 10 : 07− 5 : 35 : 52 = 20055 s

dV = 0.0669 arcsec/sec

We get,
θ ≈ 18.5 arcsec

[Using the values provided to find θ, 1 Mark]

Solution c

Since each observer measures the position of Venus relative to “his own Sun” we need to account for
the fact that they see the Sun under slightly different angles. This is shown in Fig 5. Looking at the
triangles ∆APC and ∆BP-Venus, we have [Understanding the relation between triangle ∆APC and
∆BP-Venus 1 Mark]

βB + θV = βA + θS

and therefore θV = βA − βB + θS . The quantity βA − βB is the angular separation θ calculated in (1).

Solution d

To determine the parallax of the Sun, we need to know the distance from Earth to Venus in terms of
the AU. Kepler’s third law allows us to relate the distances from Venus and Earth to the Sun to their
orbital periods, so if dES = 1 AU then

dV S =

(
TV

TE

) 2
3

dV S ≈ 0.72 AU
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Therefore dES = 0.28 AU. Using dEi =
dAB

2 tan
θi
2

, where i = V , S and the small angle approximation

tan θi
2 ≈ θi

2 we can therefore relate the parallax of Venus and the Sun through

θS =
dEV

dES
θV

which allows us to calculate θS as θS =

(
dES

dEV
− 1

)−1

(βA − βB) = 7.19 arcsec.

The distance Eath-Sun can be calculated with

dES =
dAB

2 tan
θS
2

to be
1 AU ≈ 1.66× 108 km

[Final answer carries 1 Mark, 20% deviation of provided answer will receive 0.5 Mark]
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5 Robinson Crusoe: Lost in the sands [8]

The observation night

Deserts are one of the places with least sky pollution, which makes it the best spot for night sky observations.
So, you and some of your friends decided to go on a tour to a desert. As you are the only astronomer in the
team, you have to help your friends to point the telescope to the right direction.

Here is the map of the sky of the observation night.

Figure 6: Sky of Observation Night

a. Mark the cardinal points on the map as N, S, E, and W. [0.5]

b. On the map, draw at least 4 constellations you know so that it becomes easier for you to find the Deep
Sky Objects. Label them as C1, C2, C3, C4, and write the names in the table. [2]

The real adventure

You love roaming around in the night alone. Lost in the beauty of the night sky, you started walking alone
after all of your friends are asleep. However, suddenly you realized that you came too far away from your
camp, and can’t find the way back. After three exhausting days of searching for the way back to your
friends, you finally came to the camp. But alas! Your friends probably left after searching for you, and
finally thinking that you’re dead.
Here starts your adventure. You have some dry foods and water in the tents with which you can survive for
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a few days. But you need to find your way back to home.

Fortunately, you know the location of the station from where you came, and unfortunately, you don’t know
your current location. However, you have a weird clock that shows the local sidereal time of Greenwitch –
a birthday gift from your best friend that you always keep with yourself. Armored with the knowledge of
star maps and positional astronomy, you have to find your way back to home. You can use the following map.

Figure 7: Sky map

a. Estimate your latitude from the star map. [0.5]

b. From the sky map, calculate your Local Sidereal Time. [1.5]
Hint: What is the actual definition of Local Sidereal Time?

c. Your watch shows the current Greenwitch Sidereal Time 00h 18m 33.6ss. Calculate the longitude of your
location. [1.5]
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d. Given the location to the nearest human habitation to be 26.5◦N, 27.6◦E, calculate how far you’re away
from there (In nautical miles). [1]

e. Determine the angle to the direction to which you should start walking in order to go back to the human
habitation. [1]

Rough Answers

Your location: 28◦N, 23.36◦E
HA of Autumnal Equinox = 332◦

LST = 360◦ − 332◦ = 28◦ = 1h 52m

GST = LST + λwest = 28◦ − 23.36◦ = 4.64◦ = 18m 33.6ss

Solutions

Solution a

Figure 8: Latitude

Latitude = 28◦ N [0.5 pt for estimating the latitude from the map.]
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Solution b

Figure 9: LST

Local Sidereal Time is the Hour Angle of Vernal Equinox. In the map we can find the Autumnal
Equinox at 332◦. Hence, the HA of Vernal Equinox is [1 pt for understanding that LST is HA of
Vernal Equinox]

360◦ − 332◦ = 28◦ = 1h 52m

∴ LST = 1h 52m

[0.5 pt for numerical value]

Solution c

λwest = GST− LST

[1 pt for formula]

λwest = 18m 33.6ss × 15◦ − 1h 52m × 15◦ = −23◦ 21′ 36”

∴ λ = 23◦ 21′ 36” E

[0.5 pt for numerical value]
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Solution d

Figure 10: Cosine rule

cosMG = cosNM cosNG+ sinNM sinNG cos∠MNG [0.5pt for cosine formula]

= cos 28◦ cos 26.5◦ + sin 28◦ sin 26.5◦ cos 4.24◦

∴ MG = 2◦ 27′ 9.16′′ ≈ 2.4525◦

∴ Distance to the human habitat is 2.4525 nautical miles [0.5 pt for answer]

Solution e

Figure 11: Sine rule

sin∠GMH

sinGH
=

sin 90◦

sinMG

[0.5 pt for sine rule]

∠GMH ≈ 37.71◦

Hence, the angle should be 37.71◦ Northwards from East. [0.5 pt for answer]
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